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Abstract

Interpreting deep neural networks remains a critical challenge in advancing
AI systems, particularly in tasks such as image classification and object recog-
nition. This project investigates the B-cos method, an inherently interpretable
approach for convolutional neural networks and vision transformers. We aim
to reproduce the results of the original paper "B-cos Alignment for Inherently
Interpretable CNNs and Vision Transformers", evaluate the architectural
choices made by the authors, and extend the method to object detection tasks
using the YOLO model. Our work involves implementing B-cos layers in
ResNet18 for image classification on the CIFAR-10 dataset and adapting
the method for object detection using YOLO trained on the Fruit Dataset.
Through these experiments, we validate the results of the original paper and
provide new insights into the impact of architectural modifications, such as the
absence of ReLU and normalization layers. Furthermore, we demonstrate the
applicability of the B-cos method to object detection, which was not explored
in the original paper.

1 Introduction

With the availability of more data and computing power, deep networks have been able to evolve
over the past few years, and we have seen tremendous progress in areas such as image classification
[4], emotion analysis [11], and speech understanding [12], and many other fields. Even though
these algorithms perform well in many tasks, due to their complexity is very hard to understand
them as human beings. They are very difficult to explain and many times uncontrollable [10]. In
safety-critical domains such as image classification and object-detection, where decisions can directly
impact human lives, such as identifying objects for collision avoidance in self-driving cars [2], this
opacity raises ethical concerns and practical risks. As a result, developing methods to make these
models more interpretable has become a central area of research, enabling greater transparency,
accountability, and trustworthiness in AI systems.

Existing methods such as LIME [8] and SHAP [6] have been widely used to interpret deep neural
networks. However, they often rely on post hoc approximations, require large sample sizes, and raise
concerns about fidelity to the model’s actual decision process. These limitations highlight the need
for approaches that provide more direct and efficient interpretability.

The paper "B-cos Alignment for Inherently Interpretable CNNs and Vision Transformers" [1] intro-
duces a method for interpreting deep neural networks by replacing the linear transformation in each
layer with a cosine similarity-based operation. While effective, the paper leaves some architectural
choices unexplored, such as the absence of ReLU, normalization, and bias terms.

This project reproduces the paper’s results using ResNet18 on CIFAR-10, critically evaluates the
impact of these design choices, and extends the B-cos method to object detection using YOLO on
Fruit Dataset. Key contributions include:
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• Validation of the original B-cos results.

• Analysis of architectural decisions and their impact.

• Application of B-cos to object detection, demonstrating its broader applicability.

1.1 Code Repository

The code is available at https://gits-15.sys.kth.se/mebd/b-cos-object-detection.

2 Related Work

2.1 B-cos

A standard neural network layer calculates f(x;w) = wTx+ b, where w is the weight vector, x is
the input, and b is the bias. The B-cos method modifies this by replacing the linear transformation
with a cosine similarity-based operation, scaling the weight vector to have unit norm:

B − cos(x;w) = ŵTx · | cos(x, ŵ)|B−1 (1)

where ŵ = w
∥w∥ and B controls non-linearity. This ensures that the output is always positive

and bounded by ∥ŵ∥ ≤ 1 implies B − cos(x;w) ≤ ∥x∥. A larger B suppresses output with low
alignment: B ≫ 1 and | cos(x, ŵ)| < 1 ⇒ B − cos(x;w) ≪ ∥x∥.

In standard neural networks, the output is f(x; θ) = fL ◦ · · · ◦ f1(x), with fi as the i-th layer. In
B-cos, each layer transforms l∗j (aj ;Wj) = Ŵj(aj)aj , where Ŵj(aj) = | cos(aj ,Wj)|B−1 ◦ Ŵj .
The output of the network is f∗(x; θ) = ŴL(aL) ◦ · · · ◦ Ŵ1(a1) ◦ a1.

A key feature of B-cos is its ability to compute interpretable contribution maps at each layer. For the
last layer, the contribution map is cmap = slL(x) = [W1→L(x)]

T
L · x, showing how input features

contribute to predictions.

This approach embeds interpretability directly into the architecture, providing insight into the net-
work’s decision making.

2.2 ResNets

Figure 1: The ResNet18 model consists of 18 layers, including convolutional layers and residual
blocks. Residual blocks are the core component of ResNet architectures, and they include skip
connections that bypass one or more layers.

Deep neural networks have enabled significant advances in computer vision, but their increasing depth
has highlighted critical challenges such as the degradation problem. Unlike the vanishing/exploding
gradients problem, which arises from optimization issues, the degradation problem is structural
and leads to higher training errors as networks deepen. Importantly, this problem is not related to
overfitting and directly affects training performance.

Residual Neural Networks (ResNet) addressed this challenge by introducing residual connections,
which reformulate the learning process. Instead of directly approximating a function H(x), ResNet
models learn a residual mapping F (x) = H(x)− x [5] , where the output will be:

H(x) = F (x) + x (2)
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This approach improves gradient flow and simplifies optimization, allowing effective training of deep
networks. Residual links add minimal computational overhead, as short-cut links perform simple
element-wise additions. For cases with mismatched dimensions, a linear projection can adjust the
link.

Today, ResNet architectures are a standard benchmark in computer vision, serving as the basis
for evaluating innovations and advances in deep learning. Their robustness and scalability make
them essential for testing new ideas in tasks such as image classification, object detection, and
segmentation.

2.3 YOLO

You Only Look Once (YOLO) proposes to use an end-to-end neural network that makes bounding
box and class probability predictions all at once. It differs from the approach taken by previous object
detection algorithms, which reuse classifiers to perform detection.

By taking a fundamentally different approach to object detection, YOLO has achieved state-of-the-art
results, outperforming other real-time object detection algorithms by a wide margin [7].

While algorithms like Faster RCNN [3] use a region proposal network to identify possible regions of
interest and then perform recognition on those regions separately, YOLO performs all its predictions
using a single, fully connected layer.

Methods that use region proposal networks perform multiple iterations on the same image, while
YOLO gets by with a single iteration [9].

The YOLO algorithm takes an image as input and then uses a simple deep convolutional neural
network to detect objects in the image. The architecture of the CNN model that forms the backbone
of YOLO is shown in Figure 2.

Figure 2: The detection network has 24 convolutional layers followed by 2 fully connected layers.
Alternating 1 × 1 convolutional layers reduce the feature space of the previous layers.

3 Experiments

3.1 Data

CIFAR-10 was used to train the ResNet model, and Fruit Image Dataset was used to train the YOLO
model. Though, the results of the B-cos paper were obtained using ImageNet and the original YOLO
paper uses Pascal VOC, due to the computational cost of training on ImageNet, we decided to use the
selected ones.
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3.2 Experiments and Results

3.2.1 Experiment 0: Baseline Validation

To first implement the model we created the B-cos Conv 2d object, then we replaced the convolutional
layers of the ResNet with B-cos layers. We set B = 2 and did not add any ReLU, MaxOut, or bias.
Our first model achieved 84.17% of accuracy after 100 epochs, we got the following interpretability
results, a common ResNet18 archives 87% on CIFAR10, this is a good trade-off since we exchange
3% of accuracy but we obtain interpretability.

Figure 3: Results obtained using the B-cos model with B = 2.

Figure 3 validates that the B-cos layers are achieving their intended purpose of improving inter-
pretability by aligning the model’s weights with meaningful input features, while maintaining high
classification performance. The focus on task-relevant regions in the explanation map further supports
the effectiveness of the B-cos transformation in capturing non-linear and interpretable features.

3.2.2 Experiment 1: Fine-Tuning the Non-linearity Parameter

The B parameter controls the alignment pressure between the weights (w) and the input (x) in the
B-Cos transformation. A higher B value emphasizes the cosine similarity between w and x, resulting
in larger B values enhance the contributions of strongly aligned features (high cosine similarity)
and suppress the influence of weakly aligned features, resulting in a more selective transformation,
and model weights are increasingly aligned with task-relevant patterns in the input, producing
explanations that highlight features critical for prediction. To investigate the effect of B, we trained
neural networks with B = [1.0, 1.25, 1.5, 1.75, 2.0]. The results showed improved accuracy and
interpretability with increasing B:

B 1.0 1.25 1.5 1.75 2.0

Accuracy (%) 79.37 79.79 80.63 82.34 83.11

This shows that higher B values improve nonlinear feature learning while maintaining good per-
formance, making the model better at capturing task-relevant features. Figure 3 illustrates how
explanation maps improve with increasing B. Higher B values result in clearer, more focused maps
aligned with the car’s features, enhancing both prediction accuracy and interpretability. Lower B
values produce scattered, less meaningful explanations.

Figure 4: Comparison of explanation maps for different values of B (in ascending order).
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3.2.3 Experiment 2: Bias or not?

We explored the effect of enabling bias in the B-cos network. Table 1 shows the accuracy comparison:

Table 1: Accuracy Comparison for Bias Configuration

Bias Accuracy (%)
False 81.88
True 83.08

Although enabling bias improves accuracy from 81.88% to 83.08%, it reduces interpretability. This
is visible in the explanation maps in Figure 5:

Figure 5: The left image (with bias) appears washed out and less interpretable, whereas the right
image (no bias) provides a clearer and more balanced explanation map, highlighting both positive
and negative contributions.

3.2.4 Experiment 3: Activation Functions

We compared the effects of ReLU and no activation function on the interpretability of the model.
Figure 6 highlights the differences:

Figure 6: With ReLU (left) produces noisier outputs, while without ReLU (right) yields clearer and
more interpretable explanations.

ReLU introduces non-linearity that improves accuracy but reduces interpretability by breaking
alignment with input features. Without ReLU, the explanation maps remain clearer and more
structured.

3.2.5 Experiment 4: Extending B-cos to YOLO

To evaluate the adaptability of B-cos transformations for object recognition tasks, we extended its
framework to YOLO by systematically replacing all convolutional layers in YOLO with B-cos layers.
This substitution aims to improve the interpretability of YOLO predictions while maintaining the
performance of the original architecture. The implementation directly replaces the linear transforma-
tion components of YOLO’s convolutional layers with the input-dependent B-cos transformation. As
described earlier, the B-cos layers promote weight-input alignment, allowing the model to provide
inherently interpretable explanations at each stage of the detection pipeline.

In Figures 7 and 8, we illustrate the explanation maps generated by the B-cos-enabled YOLO for
two different examples - a banana and an orange. These examples demonstrate the localized and
interpretable nature of the B-cos explanations while preserving the core recognition capabilities of
the model.

The methodology can be extended to other object detection models, or even other computer vision
tasks, to evaluate how interpretability and performance tradeoffs manifest themselves in different
domains.
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Figure 7: Comparing B-cos YOLO explanation maps and detection results for the banana example.

Figure 8: Comparing B-cos YOLO explanation maps and detection results for the orange example.

4 Conclusion

In this work, we reproduced and extended experiments from the original B-cos paper, focusing on
interpretability and accuracy trade-offs. Key findings include bias improves accuracy but reduces
explanation clarity, ReLU adds non-linearity and boosts accuracy but results in noisier explanations
and extending B-cos to YOLO preserves interpretability for object detection tasks.

These experiments highlight that while accuracy and interpretability often trade off, B-cos networks
offer a promising approach to balancing the two. Future work includes testing B-cos on additional
architectures and datasets to further validate its utility.

5 Extra

5.1 Challenges

As a team, one of the main challenges we faced was the computational power available, which
significantly limited the experiments we could run. Specifically, we worked on the project using
Google Colab with a T4 GPU. Although we paid for access to this resource, we underestimated the
processing capabilities we had acquired, which turned out to be insufficient to run the entire project
efficiently. For instance, the final runs of the ResNet experiments with Bcos took days to complete,
and at times, Google Colab sessions would disconnect during the experiments. This caused us to
restart the experiments from scratch, which caused considerable delays.

Another major challenge was completing the project with only two team members. At the beginning
of November, our third teammate withdrew from the course, which complicated the situation and
increased our workload. Furthermore, understanding the objective of the paper presented its own
challenges. In this regard, the assistant professor was instrumental in helping us ground our approach
and structure the project effectively. The paper itself is quite complex, with many nuances that
become evident during the experiments, making it difficult to grasp without proper guidance.

We also had to delete a experiment with MaxOut, since implementing it did not improve the accuracy.

5.2 Ethical Consideration, Societal Impact, and UN SDG Alignment

The project aims to provide interpretability to neural networks used for image classification. This is
highly valuable in everyday applications, as neural networks are often seen as "black boxes," where
the decisions and calculations leading to their performance remain unclear.
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Understanding how these networks arrive at their results broadens the scope for making modifications
and improvements. One of the areas we worked on, though we could not complete due to limited
computational power, was attempting to explain bias. With the knowledge of how Bcos convolutional
layers operate, it becomes possible to refine and improve models so that decision-makers can assess
whether or not to trust a neural network’s output.

This is particularly evident in the YOLO v1 example we worked on. In detection tasks, many factors
can drive the decisions and calculations of neural networks. However, when dealing with sensitive
matters like health or public safety, humans should prioritize results that make the most sense, taking
into account what is activating those neurons.

From a societal perspective, the contributions of this project and the original paper are far-reaching.
By making neural networks interpretable, we can increase trust in AI systems and their adoption in
critical areas. For example, in our use of YOLO v1 for object detection tasks, understanding the
characteristics driving model decisions is particularly important in high-stakes applications such as
healthcare diagnostics or identification of safety hazards. Without proper interpretability, there is a
significant risk of misuse or over-reliance on AI systems, leading to potential societal harm, such as
wrongful decisions or a lack of accountability for errors.

5.3 Individual Contribution.

Martín Bravo took on the role of technical leader and project organizer. He was responsible for design-
ing the overall structure of the project and planning the experiments, ensuring that the objectives were
clear and achievable. Martín also played a key role in resolving technical challenges, such as dealing
with disconnections and the computational limitations of the Google Colab environment, which were
significant hurdles during the project’s execution. Additionally, Martín actively contributed to writing
sections of the final report.

Julian Alcibar, on the other hand, focused on the experimental development and analysis aspects of
the project. He handled the configuration and execution of experiments on Google Colab, utilizing
GPUs to maximize efficiency within the computational constraints. Julian was also responsible for
implementing the main model based on YOLO v1 and making the necessary adjustments to conduct
initial tests. His contributions included analyzing the results of the experiments, identifying relevant
patterns related to interpretability, and ensuring the findings were clearly documented. Julian also
authored the sections of the report detailing the methodology and the analysis of results.

5.4 Self-Assessment

As a group we believe that we deserve an A. We first reproduced the results of the paper, and discussed
its main points and decisions. Secondly, we saw that there were hyperparameters that were badly
explained in the paper, and we analyzed them. Finally, we went beyond the scope of the paper and
implemented the method for the object detection task, successfully interpreting the predictions of the
YOLO model.

There are some bonus points that we believe we deserve:

• There is no implementation of the B-cos YOLO model in the original paper, so we had to
implement it from scratch.

• We learned why ReLU, MaxOut and NormLayer were not used in the paper, and we analyzed
the effect of using them.

• High quality report.
• Summary of ResNet and YOLO architectures.
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