class OpenAIResponsesModel(Model):
    """
    Implementation of `Model` that uses the OpenAI Responses API.
    """
    def __init__(
        self,
        model: str | ChatModel,
        openai_client: AsyncOpenAI,
    ) -> None:
        self.model = model
        self._client = openai_client
    def _non_null_or_not_given(self, value: Any) -> Any:
        return value if value is not None else NOT_GIVEN
    async def get_response(
        self,
        system_instructions: str | None,
        input: str | list[TResponseInputItem],
        model_settings: ModelSettings,
        tools: list[Tool],
        output_schema: AgentOutputSchema | None,
        handoffs: list[Handoff],
        tracing: ModelTracing,
    ) -> ModelResponse:
        with response_span(disabled=tracing.is_disabled()) as span_response:
            try:
                response = await self._fetch_response(
                    system_instructions,
                    input,
                    model_settings,
                    tools,
                    output_schema,
                    handoffs,
                    stream=False,
                )
                if _debug.DONT_LOG_MODEL_DATA:
                    logger.debug("LLM responded")
                else:
                    logger.debug(
                        "LLM resp:\n"
                        f"{json.dumps([x.model_dump() for x in response.output], indent=2)}\n"
                    )
                usage = (
                    Usage(
                        requests=1,
                        input_tokens=response.usage.input_tokens,
                        output_tokens=response.usage.output_tokens,
                        total_tokens=response.usage.total_tokens,
                    )
                    if response.usage
                    else Usage()
                )
                if tracing.include_data():
                    span_response.span_data.response = response
                    span_response.span_data.input = input
            except Exception as e:
                span_response.set_error(
                    SpanError(
                        message="Error getting response",
                        data={
                            "error": str(e) if tracing.include_data() else e.__class__.__name__,
                        },
                    )
                )
                request_id = e.request_id if isinstance(e, APIStatusError) else None
                logger.error(f"Error getting response: {e}. (request_id: {request_id})")
                raise
        return ModelResponse(
            output=response.output,
            usage=usage,
            referenceable_id=response.id,
        )
    async def stream_response(
        self,
        system_instructions: str | None,
        input: str | list[TResponseInputItem],
        model_settings: ModelSettings,
        tools: list[Tool],
        output_schema: AgentOutputSchema | None,
        handoffs: list[Handoff],
        tracing: ModelTracing,
    ) -> AsyncIterator[ResponseStreamEvent]:
        """
        Yields a partial message as it is generated, as well as the usage information.
        """
        with response_span(disabled=tracing.is_disabled()) as span_response:
            try:
                stream = await self._fetch_response(
                    system_instructions,
                    input,
                    model_settings,
                    tools,
                    output_schema,
                    handoffs,
                    stream=True,
                )
                final_response: Response | None = None
                async for chunk in stream:
                    if isinstance(chunk, ResponseCompletedEvent):
                        final_response = chunk.response
                    yield chunk
                if final_response and tracing.include_data():
                    span_response.span_data.response = final_response
                    span_response.span_data.input = input
            except Exception as e:
                span_response.set_error(
                    SpanError(
                        message="Error streaming response",
                        data={
                            "error": str(e) if tracing.include_data() else e.__class__.__name__,
                        },
                    )
                )
                logger.error(f"Error streaming response: {e}")
                raise
    @overload
    async def _fetch_response(
        self,
        system_instructions: str | None,
        input: str | list[TResponseInputItem],
        model_settings: ModelSettings,
        tools: list[Tool],
        output_schema: AgentOutputSchema | None,
        handoffs: list[Handoff],
        stream: Literal[True],
    ) -> AsyncStream[ResponseStreamEvent]: ...
    @overload
    async def _fetch_response(
        self,
        system_instructions: str | None,
        input: str | list[TResponseInputItem],
        model_settings: ModelSettings,
        tools: list[Tool],
        output_schema: AgentOutputSchema | None,
        handoffs: list[Handoff],
        stream: Literal[False],
    ) -> Response: ...
    async def _fetch_response(
        self,
        system_instructions: str | None,
        input: str | list[TResponseInputItem],
        model_settings: ModelSettings,
        tools: list[Tool],
        output_schema: AgentOutputSchema | None,
        handoffs: list[Handoff],
        stream: Literal[True] | Literal[False] = False,
    ) -> Response | AsyncStream[ResponseStreamEvent]:
        list_input = ItemHelpers.input_to_new_input_list(input)
        parallel_tool_calls = (
            True if model_settings.parallel_tool_calls and tools and len(tools) > 0
            else False if model_settings.parallel_tool_calls is False
            else NOT_GIVEN
        )
        tool_choice = Converter.convert_tool_choice(model_settings.tool_choice)
        converted_tools = Converter.convert_tools(tools, handoffs)
        response_format = Converter.get_response_format(output_schema)
        if _debug.DONT_LOG_MODEL_DATA:
            logger.debug("Calling LLM")
        else:
            logger.debug(
                f"Calling LLM {self.model} with input:\n"
                f"{json.dumps(list_input, indent=2)}\n"
                f"Tools:\n{json.dumps(converted_tools.tools, indent=2)}\n"
                f"Stream: {stream}\n"
                f"Tool choice: {tool_choice}\n"
                f"Response format: {response_format}\n"
            )
        return await self._client.responses.create(
            instructions=self._non_null_or_not_given(system_instructions),
            model=self.model,
            input=list_input,
            include=converted_tools.includes,
            tools=converted_tools.tools,
            temperature=self._non_null_or_not_given(model_settings.temperature),
            top_p=self._non_null_or_not_given(model_settings.top_p),
            truncation=self._non_null_or_not_given(model_settings.truncation),
            max_output_tokens=self._non_null_or_not_given(model_settings.max_tokens),
            tool_choice=tool_choice,
            parallel_tool_calls=parallel_tool_calls,
            stream=stream,
            extra_headers=_HEADERS,
            text=response_format,
        )
    def _get_client(self) -> AsyncOpenAI:
        if self._client is None:
            self._client = AsyncOpenAI()
        return self._client